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SUMMARY

The present work is devoted to the numerical approximation of a system which arises when modelling
a two-phase �ow in a pipeline. Two particular di�culties are of special interest, the non-conservativity
and the weakly hyperbolicity of this system. Some elementary waves are characterized and a relaxation
system, unconditionally hyperbolic, is proposed. The stability criteria of the resulting relaxation method
are achieved by a Chapmann–Enskog-like expansion. A numerical scheme based on the relaxation system
is proposed and computations are performed on a shock tube. Validation is performed by comparison
with the exact solution and also to the solution from a modi�ed HLL scheme. Copyright ? 2005 John
Wiley & Sons, Ltd.
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1. INTRODUCTION

Let us consider the behaviour of a compressible �uid, essentially composed by two non-
miscible components. This is for example the case of oil (index k=1) and water (index k=2)
in pipelines. Each component (k) is characterized by: the void fraction �k∈(0; 1), the den-
sity �k¿0, the velocity uk∈R and the pressure pk¿0. According to the Baer–Nunziato model
[1] and with the assumption of isentropic inviscid �ow, the physical model is
given by

@tW+ @xF(W)=B(W)@x�1 (1)
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with

W=




�1
�1�1
�1�1u1
�2�2
�2�2u2



; F(W)=




0
�1�1u1

�1�1u21 + �1p1
�2�2u2

�2�2u22 + �2p2



; B(W)=




−uI
0
pI
0

−pI




(2)

where uI and pI are the interfacial velocity and pressure. We consider, as in Reference [1],
that uI = u1 and pI =p2. The partial pressure pk is a function of the partial density �k
(pk =pk(�k)) and the sound speed is given by: ck =

√
p′(�k)=�k .

This system is in a non-conservative form. It reduces to a conservative form in some
speci�c cases (for example when one component is not present). The eigenvalues of (1) are
real (u1; u1 ± c1 and u2 ± c2) but the system is not diagonalizable when �1 = 0 or u1 = u2 ± c2.
Although the system is non-conservative, we can characterize some elementary shocks by the
following jump conditions:

[�1]= 0 and − �[W] + [F(W)]=0 (3)

where � denotes the shock speed. The states W0 and W are connected by a contact disconti-
nuity if and only if W belongs to the integral curve solution of: d�W(�)=R0(W(�)) where
R0 is the right eigenvector associated with the eigenvalue u1.
From the numerical point of view, a precise evaluation of the interface localization is

required. The HLL modi�ed scheme [2] is too much di�usive. Indeed, after a long time
calculation, the interface is spread on the entire domain. The schemes based on a complete
spectral decomposition of the Riemann problem such as the VFRoe scheme [3], known to
produce accurate approximation of the solutions, cannot be used when the system is not
hyperbolic. In addition, the numerical approximation of solutions of a non-conservative system
need a particular attention as soon as discontinuities appear [4].

2. THE RELAXATION METHOD

In this section we propose and analyse a relaxation system to design a numerical scheme.
After the works of Chen et al. [5], Liu [6], Suliciu [7] and Coquel and Perthame [8], the
relaxation method can be viewed as a well-established tool to approximate the solution of
the compressible Euler equations of gas dynamics. Recently, Berthon et al. [9] have extended
this method to a weakly hyperbolic system. The main feature of the relaxation solvers is to
use a relaxation system for which the solution of the Riemann problem is easy to compute.
We consider a similar approach and we develop a relaxation model for the current non-

conservative and weakly hyperbolic system. In this way, we introduce new variables �1 and
�2 which are intended to coincide with the pressure p1 and p2 in the limit of the relaxation
parameter �. We propose the following relaxation system:

@tV+ Ã(V)@xV=
1
�
R(V) (4)
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with Vt = (�1; �1�1; �1�1u1;�1; �2�2; �2�2u2;�2) and

Ã(V) =




u1 0 0 0 0 0 0
0 0 1 0 0 0 0

�1 −�2 −u21 2u1 �1 0 0 0

0 − a21u1
�1�21

a21
�1�21

u1 0 0 0

0 0 0 0 0 1 0
0 0 0 0 −u22 2u2 �2

0 0 0 0 − a22u2
�2�22

a22
�2�22

u2




R(V) =




0
0
0

p1 −�1
0
0

p2 −�2




(5)

where the positive relaxation parameters a1 and a2 are detailed later on.
Consider the set of admissible states: �= {V∈R7; �1 ∈ (0; 1); �1¿0; �2¿0}. For all V∈�,

the relaxation system (4) is unconditionally hyperbolic. Its eigenvalues �i are u1, u1± (a1=�1),
u2; u2 ± (a2=�2) and each �eld is linearly degenerated. The Riemann invariants associated
with �= uk ± (ak=�k) are: �1; uk ± (ak=�k); �k ∓ akuk ; �k′ ; uk′ ; �k′ where k and k ′ denotes
the two �uid components, with �= u1 are: u1; u2; �2; �2�2; �1(�2 − �1) and with �= u2
are: �1; �1; u1; �1; u2; �2.
Let us point out that the linear degeneracy of each characteristic �elds of (5) is actually

desirable since the property yields that the Riemann problem associated can be solved in a
straightforward fashion for � set to in�nity.
According to Liu [6], Chen et al. [5] some compatibility conditions must be satis�ed by the

relaxation system (4). These conditions are actually needed to prevent numerical instabilities
in the relaxation method when � goes to zero. This conditions are usually referred to sub-
characteristic like conditions after Whitham [10]. It is therefore expected that the parameters
a1 and a2 must be �xed in order to ful�l such stability requirements. In the framework of
our relaxation method it is convenient to follow the approach proposed by Chen et al. [5]
or Whitham [10] based on the �rst-order asymptotic equilibrium system. In that way, we
consider the Chapmann–Enskog expansion of small departures ��1; �

�
2 from the equilibrium

pressure p1; p2:

�1 =p1 + ���1; �2 =p2 + ���2 (6)

After substituting (6) into (4) and neglecting higher order terms, we classically end up
with the �rst-order asymptotic equilibrium system under the following generic form:

@tW+ @xF(W)−R(W)@x�1 = �C(W)@x(D(W)@xW)

C(W)=




1 0 0 0 0
0 1 0 0 0
0 0 1

�1�1
0 −�2

�1�1

0 0 0 1 0
0 0 0 0 1

�2



; D(W)=




0 0 0 0 0
0 0 0 0 0
�2� 0 �1�1 0 �2�2
0 0 0 0 0
� 0 0 0 �2


 (7)

with �1 = (1=�1)(a21 − �21p′
1(�1)); �2 = (1=�2)(a

2
2 − �22p′

2(�2)) and �=(�2=�2)(u1 − u2).
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Now, the stability conditions to be put on the pairs a1; a2 clearly come from the requirement
that the �rst-order correction operator in (7) must be dissipative relatively to the zero-order
approximation. Such conditions may be obtained by establishing the L2-stability of the constant
coe�cient problem by linearizing (7) in the neighbourhood of the equilibrium pressure. In
other words, for all admissible states, all eigenvalues of the matrix

−i�A− ��2CD (8)

should have negative real parts [11]. After straightforward calculations, we �nd independent
conditions for a1 and a2 given by

a1¿�1
√
p′
1(�1); a2¿�2

√
p′
2(�2) (9)

3. NUMERICAL IMPLEMENTATION

The numerical scheme is based on the resolution of the Riemann problem associated to the
relaxation system (4). This procedure is standard within the framework of the relaxation
schemes [12, 13].
For the sake of completeness, we brie�y recall the numerical relaxation procedure to ap-

proximate the weak solutions of (1).
We use a structured mesh in space and time de�ned by the cells Ii=[xi−(1=2); xi+(1=2)] and

the time intervals [tn; tn+1] with

tn= n�t and xi+(1=2) = (i + 1
2)�x with (n; i) ∈ N×Z (10)

where �t denotes the time increment and �x the spacial cell width.
We consider a piecewise constant approximation Wh of the equilibrium solution de�ned by

Wh(x; t) =Wn
i ; (x; t) ∈ Ii×[tn; tn+1) (11)

At the time t = 0, we set

W0
i =

1
�x

∫
Ii
W(x; t = 0) dx (12)

The approximate solution at time tn is then evolved to the next time level tn+1 by taking
into account two steps:

(1) Time evolution: For tn¡t¡tn +�t, we calculate an approximate solution Vn+1;− for
system (5) with � → +∞ for the initial data Vh(x; tn) which is deduced from the
equilibrium state Wn with �1 =p1(�1) and �2 =p2(�2). Under the CFL criterion

�t
�x

max |�i(Vh)| 6 1
2

(13)
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the solution Vh(x; tn+�t) is composed of solutions of non-interacting Riemann prob-
lem. Let us note that each Riemann problem associated with the system is straightfor-
ward.
Next, the projection of Vh(x; tn + �t) on the piecewise constant functions is

given by

Vn+1;−i =
1
�x

∫ xi+(1=2)

xi−(1=2)

Vh(x; tn +�t) dx (14)

Let us emphasize that the relaxation model (4) is non-conservative. Thus, the
Godunov scheme never can be written under the usual numerical conservative form
(see Reference [13]).

(2) Relaxation: At time tn+1, we de�ne the updated approximate equilibrium solution
Wn+1 by computing:

(�k)n+1i =(�k)n+1;−i ; (�k�k)n+1i =(�k�k)n+1;−i ; (�k�kuk)n+1i =(�k�kuk)n+1;−i (15)

where i ∈ Z; k=1 denotes the oil and k=2 the water.
Setting (�k)n+1 =pk(�n+1k ), this step can also be viewed as the resolution of the ODE

system:

@t(V)=
1
�
R(V) (16)

with the initial data Vn+1;− and � set to zero (or equivalent to t → ∞).
To conclude the present paper, we propose a numerical illustration of the above method.

We use a uniform 1000 points mesh and the CFL number is �xed to 0.5. The above model
is closed by the choice of the pressure laws: we consider pi= c2i �i where c1 = 200m=s and
c2 = 100m=s. We propose to approximate the solution of a shock tube. The initial data is
made of two constant states separated by a discontinuity located at x=0:5. The left and right
states are given by

�L1 =0:9; �L1 =10; uL1 =0; �L2 =40; uL2 =0

�R1 =0:01; �R1 =17:1; uR1 =0; �R2 =59:8; uR2 =0

The exact solution is composed of a rarefaction wave and a shock wave separated by a
contact discontinuity. The approximate solution is plotted Figure 1 and compared with the
exact solution and the approximate solution obtained by the modi�ed HLL scheme (see
Reference [2]). The relaxation scheme gives better results and is less di�usive than the mod-
i�ed HLL scheme. The numerical approximation is in fairly good agreements with the exact
solution. We obtain the expected velocity of the contact discontinuity while the HLL scheme
introduce large errors in the position of the contact wave. In addition, the non-conservative
numerical procedure leads to approximate shock waves according to the above de�nition (3).
To conclude, the relaxation scheme detailed in the present paper is able to approximate weak
solutions of the weakly hyperbolic system (1).
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Figure 1. Shock tube problem, exact solution (�ll line), relaxation scheme (◦ symbols), HLL scheme
(+ symbols), 1000 cells mesh, t=0:00175; c1 = 200; c2 = 100; �L1 = 0:9; �

L
1 = 10; u

L
1 = 0; �

L
2 = 40,

uL2 = 0; �
R
1 =0:01; �

R
1 =17:1; u

R
1 =0; �

R
2 =59:8; u
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